

Reduction To Center

Ali ELSAGHEER, Mohamed FREESHAH, Reda FEKRY
reda.Abdelkawy@feng.bu.edu.eg

Problem Definition

$>$ In a triangulation network, mosques, church spires, or any similar tall objects are marked as triangulation stations.
$>$ Such types of stations cannot be occupied.
$>$ Consequently, the instrument is set up on an auxiliary station which is so close to the main station.
$>$ This auxiliary station is called "Satellite Station"
$>$ At the satellite station, all angles to the adjacent stations are measured with the same precision of other angles in the system.
$>$ The process of computing the main angle at the inaccessible station from the measured ones is called "Reduction to center"

Problem Definition

$>$ From the shown figure:
$\boldsymbol{Y}, \boldsymbol{T}$, and \boldsymbol{B} : triangulation stations
T: inaccessible triangulation station
\boldsymbol{S} : satellite station
α_{1}, α_{2} : observed angles
a : distance between satellite station and inaccessible station.
By solving triangles TSB, and TSY
$\frac{\sin c_{1}}{a}=\frac{\sin \alpha_{1}}{d_{1}}$, and $\frac{\sin c_{2}}{a}=\frac{\sin \alpha_{2}}{d_{2}}$

i.e.,
$c_{1}=\sin ^{-1} \frac{\mathrm{a} \times \sin \alpha_{1}}{d_{1} \times \sin 1^{\prime \prime}}$
$c_{2}=\sin ^{-1} \frac{\mathrm{a} \times \sin \alpha_{2}}{d_{2} \times \sin 1^{\prime \prime}}$
Such that c_{1}, and c_{2} are given in seconds.

Numerical Exercises

> (1) Directions were observed from a satellite station $\mathrm{S}, 150 \mathrm{ft}$ apart from the main triangulation station T such that direction $\mathrm{SA}=00^{\circ} 00^{\prime} 00^{\prime \prime}, \mathrm{SB}=71^{\circ} 54^{\prime} 30^{\prime \prime}$, and $\mathrm{ST}=296^{\circ} 12^{\prime} 15^{\prime \prime}$. Compute the subtended angle (ATB) at the main station T if the length of sides $\mathrm{TA}=54070 \mathrm{ft}$, and $\mathrm{TB}=71280 \mathrm{ft}$.

$$
\begin{aligned}
& \alpha_{2}=360-296^{\circ} 12^{\prime} 15^{\prime \prime}=63^{\circ} 47^{\prime} 45^{\prime \prime} \\
& \alpha_{1}=\alpha_{2}+\widehat{A S B}=63^{\circ} 47^{\prime} 45^{\prime \prime}+71^{\circ} 54^{\prime} 30^{\prime \prime}=135^{\circ} 42^{\prime} 15^{\prime \prime} \\
& c_{1}=\sin ^{-1} \frac{\mathrm{a} \times \sin \alpha_{1}}{d_{1} \times \sin 1^{\prime \prime}}=\sin ^{-1} \frac{150 \times \sin 135^{\circ} 42^{\prime} 15^{\prime \prime}}{71280 \times \sin 1^{\prime \prime}}=303^{\prime \prime} \\
& c_{2}=\sin ^{-1} \frac{\mathrm{a} \times \sin \alpha_{2}}{d_{2} \times \sin 1^{\prime \prime}}=\sin ^{-1} \frac{150 \times \sin 63^{\circ} 47^{\prime} 45^{\prime \prime}}{54070 \times \sin 1^{\prime \prime}}=513.41^{\prime \prime} \\
& \theta=\widehat{A T B}=\alpha_{1}^{\prime}-\alpha_{2}^{\prime}=71^{\circ} 50^{\prime} 59.72^{\prime \prime}
\end{aligned}
$$

Numerical Exercises

(2) Instead of a main triangulation station A which is not accessible, a theodolite was setup at station S 10.44 ft apart and approximately south-east from A. The observed direction to A was $43^{\circ} 22^{\prime} 15^{\prime \prime}$ while that to B was $158^{\circ} 48^{\prime} 57^{\prime \prime}$ and that to C was $227^{\circ} 25^{\prime} 41^{\prime \prime}$. The lengths of $A B$ and $A C$ are 16560 ft and 21580 ft , respectively. Compute angle BAC.

$$
\begin{aligned}
& \alpha_{1}=\operatorname{directions}(S B-S A)=115^{\circ} 26^{\prime} 42^{\prime \prime} \\
& \alpha_{2}=360-\operatorname{directions}(S C-S A)=175^{\circ} 56^{\prime} 34^{\prime \prime} \\
& c_{1}=\sin ^{-1} \frac{a \times \sin \alpha_{1}}{A B \times \sin 1^{\prime \prime}}=\sin ^{-1} \frac{150 \times \sin 135^{\circ} 42^{\prime} 15^{\prime \prime}}{71280 \times \sin 1^{\prime \prime}}=117.42^{\prime \prime} \\
& c_{2}=\sin ^{-1} \frac{a \times \sin \alpha_{2}}{A C \times \sin 1^{\prime \prime}}=\sin ^{-1} \frac{150 \times \sin 63^{\circ} 47^{\prime} 45^{\prime \prime}}{54070 \times \sin 1^{\prime \prime}}=7^{\prime \prime} \\
& \alpha_{1}^{\prime}=\alpha_{1}+c_{1} \\
& \alpha_{2}^{\prime}=\alpha_{2}+c_{2} \\
& \theta=\widehat{B A C}=360-\left(\alpha_{1}^{\prime}-\alpha_{2}^{\prime}\right)=68^{\circ} 34^{\prime} 39.58^{\prime \prime}
\end{aligned}
$$

End of Presentation

